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A previously reported modified hypernetted-chain theory is applied to study the structure of liquid
metal in the liquid domain well above and below the freezing point. The former liquid domain permits a
structural investigation of the metal-nonmetal transition for the expanded liquid metals, whereas the
latter liquid domain permits a microscopic understanding of the dynamics of supercooled simple liquids.
It was found in this work that the hard-sphere bridge function proposed by Malijevsky and Labik [Mol.
Phys. 60, 663 (1987)] is currently the most reliable and accurate means for studying the structure of

liquid metals over a fairly wide range of densities.

PACS number(s): 61.20.Gy, 61.20.Ne, 64.60.My, 61.25.Mv

In a recent paper [1] we reviewed the present status of
theories in the study of liquid structure. It was conclud-
ed from our study that for a fluid such as a liquid metal
near freezing the modified hypernetted-chain (MHNC)
integral equation is the most accurate method presently
available. This conclusion finds support in various appli-
cations of the theory such as the investigation of expand-
ed liquid metals [2]. The basic structure of MHNC
theory was reexamined later in other papers [3,4] within
the context of variational MHNC. It appears from these
latter works that an appropriate correction related to the
widely used analytical Percus-Yevick hard-sphere bridge
function B (r) has to be considered seriously for reliably
applying a fully self-consistent MHNC theory. In this
paper we intend to assess the potential application of the
MHNC theory to the problem of supercooled liquid dy-
namics. This idea was inspired from our recent calcula-
tion [5] on the liquid-glass transition using the mode-
coupling theory.

The mode-coupling theory, which is based on the
kinetic theory of a classical equilibrium liquid and the
Zwanzig-Mori formulation, was extended a decade ago
by Leutheusser [6] and Bengtzelius, G6tze, and Sjolander
[7] to a supercooled liquid region. Central to this kind of
theory is the density-density correlation function describ-
ing the spatial and temporal evolution of particles. It can
be shown that the density-density correlation function
satisfies a certain self-consistent integral equation and
that the latter in turn is expressed explicitly as a function-
al of the static structure factor S(q ), which is the sole in-
put to the theory. Consequently, given S(q) at each
lowered temperature or increased pressure, an iterative
self-consistent calculation would permit us to extract use-
ful information such as the critical temperature in a su-
percooled liquid [7], to understand relaxation processes
such as the a [8] and B [9] dynamics, to deduce the mech-
anism of diffusive behavior [10], etc. In our previous
works we have obtained these S(g)’s [or the Fourier-
transformed of pair-correlation functions g (7)’s] from the
molecular-dynamics (MD) simulation. It is our present
interest to evaluate S (¢g) for a monatomic liquid metal us-
ing the variational MHNC theory. To our knowledge

1063-651X/94/49(2)/982(4)/$06.00 49

neither the variational MHNC nor the MHNC has been
applied to the metastable states of realistic systems in the
literature (closely related works are the one-component
soft-sphere fluid by Kambayashi and Hiwatari [11] and
the hard-sphere fluid by Malijevsky, Labik, and Smith
[12] and Nezbeda and Smith [13]).

The study of g(r) as a function of temperature and
density begins with the Ornstein-Zernike relation
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FIG. 1. (a) Static structure factor S(q) (long-dashed curve)
for the liquid metal Cs obtained by Fourier-transforming g(r)
and calculated using Eqgs. (1)-(3) compared with experimental
data (open circles) from [18]. (b) Static structure factor S(q)
(long-dashed curve) for the liquid metal Cs obtained by
Fourier-transforming g(7) and calculated using Egs. (1), (2),
and (4) compared with experimental data (open circles) from
[18].
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h(n=c(r+p [drh(r—r|c(r), (1)

where p is the number density, kA (r)=g(r)—1 and c(r)
are the total and direct correlation functions, respective-
ly. To solve this equation one must supplement it with a
closure. The most frequently used form is

g(r)=exp[h(r)—c(r)—B¢(r)—B(r)], ()

where ¢(r) is the pair potential and 8=(kzT) ! is the in-
verse temperature. Given ¢(r) the pair-correlation func-
tion can be obtained by solving Egs. (1) and (2) iteratively
for a prescription of bridge function B(r) [the usual
hypernetted-chain approximation corresponds to setting
B(r)=0]. There are two alternatives to the choice of
B (r) according to the variational MHNC [4]. One can
take advantage of the analytic Percus-Yevick hard-sphere
Bypyys(r;m), 1 being the packing ratio, but as demon-
strated in [4] a correction

Sus(m)=(4n—391)(1—n)"2—6m(1—7)"'—2In(1—17)
has to be augmented. In this case 7 is fixed by (to be
called method C below)
ddps(m)/3n+1p [ drlgyFos (r;m) —gpyms(r;n)]
oB (r;m)
« 27 PYHS n_ 0
9

Here glB0iGs(r;m) and gpyps(r;m) are the pair-

correlation functions in the MHNC theory associated
with the ¢(r) and “PYHS”-type potentials, respectively.

(3)
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On the other hand, one can use the “exact” Verlet-Weis-
Henderson-Grundke parametric  gywns(7;7) and
Bywns(r;m) [14,15], in which case the criterion for fixing
7 is (to be called method D below)

9Bywys(7;7)
%Pfdr[gxg\rg'ﬁs(’;ﬂ)—ngﬂs(r;n)]T=O

4)

Employing a highly reliable ¢(r) [16,17], Egs. (3) and
(4) have been applied previously [4] to the calculation of
S(q) for liquid metals Na, K, Rb, and Cs near freezing.
Both criteria yield similar liquid structure factors that are
in reasonably good agreement with measured data. To
test further the usefulness of the variational MHNC
theory, it is perhaps more instructive to extend our calcu-
lation to the liquid domain away from the melting tem-
perature. To this end we first perform an iterative calcu-
lation for the liquid metal Cs at elevated temperatures.
Figures 1(a) and 1(b) compare observed values [18] with
S (q)’s calculated respectively from Egs. (1)-(3) and Egs.
(1), (2), and (4). It can be inferred from the comparison
that the theoretical S(q)’s well above freezing are of
equally good quality with what we found for liquid alkali
metals near freezing and with those reported by others
[2,3] for the expanded liquid metals. With these en-
couraging results we proceed next with our variational
MHNC calculation focusing now on temperatures below
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FIG. 3. (a) Pair-correlation function g () (long-dashed curve)
for the liquid metal Na calculated using Egs. (1), (2), and (5)
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FIG. 2. (a) Pair-correlation function g (r) (long-dashed curve)
for the liquid metal Na calculated using Eqgs. (1)-(3) compared
with molecular-dynamics data (full curve) from [5]. (b) Pair-
correlation function g (r) (long-dashed curve) for the liquid met-
al Na calculated using Egs. (1), (2), and (4) compared with
molecular-dynamics data (full curve) from [5].

compared with molecular-dynamics data (full curve) from [5].
The inset corresponds to the second peak region of g(r) at
T =348 K. (b) Static structure factor.S (g) (long-dashed curve)
for the liquid metal Na by Fourier-transforming g (r) and calcu-
lated using Egs. (1), (2), and (5) compared with experimental
data (open circles) from [21] for T=423 K and from [22] for
others.
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freezing. The liquid metal Na was taken as our prototype
system of investigation. There are two reasons. One is
the fact that realistic p vs T data for the Na system are
available [5] and the other is because of the unavailability
of experimental data for Cs S(g)’s below freezing, while
the MD simulation for the Na system has been performed
previously [5]. In Figs. 2(a) and 2(b) we present the cal-
culated g(r)’s obtained using the above-mentioned two
criteria and they are compared separately with the same
MD g(r)s. There are several discernible features that
merit emphasis.

First of all we see that the overall agreement between
MD g(r)’s and those calculated in methods C and D is
qualitatively satisfactory. Quantitatively method C is
capable of yielding g(r)’s at sufficiently low T, but the
computed principal peak of g(r) is overestimated some-
what; this overestimation is seen to be more pronounced
as T is decreased. On the other hand, for g (r)’s calculat-
ed in method D, we obtain quite different behavior. Here
we notice that the iterative calculation fails at 7=223 K
(no solution) and, for the successful ones above this T, the
calculated first peak of g (r) relative to MD’s is seen to be
slightly underestimated from near freezing to T below.
For both methods C and D, a relative shift in phase at the

|

H. C. CHEN AND S. K. LAI 49

first minimum and beyond is clearly noticeable. These
discrepancies between the MHNC theory and the MD
simulation suggest the inadequacies of the methods and
can be physically traced back to the use of the hard-
sphere B(r). In method C the Percus-Yevick hard-
sphere approximation is surely not accurate enough for a
fluid at high densities. This argument applies partly also
to the Verlet-Weis-Henderson-Grundke approximation,
for Bywys(7;m) may be subject to numerical uncertain-
ties due to inverse Fourier transformation (see the com-
ments in Ref. [19]). Accordingly, despite the fact that
method D is quantitatively preferable for obtaining a
reasonable g (7), it is nevertheless not a good starting ap-
proach for the study of the liquid — glass transition prob-
lem.

The above deficiencies imply a need to seek a more ac-
curate hard-sphere B(r). A guide toward this goal is to
adopt a theory such that for any proposed B (r) it should
ensure agreement with the computer simulation data of
hard spheres. Malijevsky and co-workers [12,19,20] have
in fact made a very successful attempt. In their original
work [19] these authors assumed an empirical analytic
expression for the bridge function Bygyys(r)=b%r)
where

[a, tay(r/o—1)][r/o—1—a,][r/oc—1—a,]/(asa,), r=a,o

b(r)=

o being the hard-sphere diameter and the parameters 4;
and a; are determined, respectively, by continuity condi-
tions and by fitting to all known structural and thermo-
dynamic computer simulation data of hard spheres over
the entire fluid range up to the density of freezing. We
have substituted Eq. (5) and its associated gy pus(7;7)
[obtained by solving Egs. (1) and (2) for a hard-sphere
system with By s (7;7)] into Eq. (4). An iterative calcu-
lation with Egs. (1) and (2) is then repeated. The results
of computations are depicted in (a) Fig. 3(a) along with
the MD g (r)’s from [5] for T below freezing and (b) Fig.
3(b) along with the experimental S(gq)’s [21,22] for T
above freezing. It is interesting to note two points. First,
for T>373 K, the calculated S(gq)’s agree excellently
with the measured S (q)’s throughout a wide range of ¢q
values notably at different positions of peaks and valleys;
this quality of the liquid structure persists below 7'=373
K down to T =173 K where the g (r)’s obtained compare
very well also with the MD g (r)’s. Second, there appears
a distinct shoulder near the second maximum at a lower
T near freezing and the subsequent change of it into a
double-peak structure at a much lower 7. The first point
is clearly due to our choice of By yg(7;7), which has
been assessed critically by Malijevsky and co-workers

Aexp[—as(r/o—1—a,)lsin[ Ay(r/o—1—ay)]l/r, rZa4o

r

[12,20]. As for the occurrence of a shoulder or subpeaks,
its existence is theoretically unknown, but it is believed to
be a characteristic feature of the hard-sphere system hav-
ing a density that is greater than the freezing density
(p=0.49, Ref. [12]). Recent Monte Carlo simulation of
hard spheres seems to substantiate this point (see Fig. 1
in Ref. [20]).

In conclusion we have examined the MHNC integral
equation theory and confirmed positively the possibility
of extending it to the study of liquid structure factors of
metals at T well above and below freezing. Our results of
calculations show that the hard-sphere B (r) proposed by
Malijevsky and Labik is capable of yielding reasonably
accurate structural data; the theory is sufficiently quanti-
tative also for making realistic the structural study of ex-
panded liquid metals and the dynamics of supercooled
liquids.
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